Selection of sealants

The proper application of sealants involves not only choosing the material with the correct physical and chemical properties, but also ensuring:

- The good understanding of the joint design,
- The substrates to be sealed,
- The performance needed,
- And the economic costs involved in the *installation* of the joint sealant.

Typical considerations in selecting a sealant type for the construction industry are:

- **Joint Design:**
 - The specifics of the joint design and configuration must match up with the sealant's movement capabilities in installed conditions.
 - The practicality of placement and aesthetics also need consideration.

- **Physical and chemical properties:**
 - Mechanical properties of the sealant like
 - Modulus of Elasticity,
 - Stress/strain recovery characteristics,
 - Tear strength,
 - And fatigue resistance are all factors—
 - That influences the sealant performance in a joint.
 - The polymeric composition along with other additives will affect the regulatory compliance of the product.

- **Durability properties:**
 - The adhesion properties of the sealant to the specific substrates—
 - The aging properties of the cured sealant—
 - as they relate to its resistance to:
 - ultra-violet radiation,
 - moisture, temperature,
 - cyclic joint movement
 - and bio-degradation
 - Can profoundly influence the service life of the installed sealant.

Application/installation properties:

- Considerations important to the consistency of the sealant include:
Key Features of Sealant Chemistries
Joint sealants come in many different types, and include:

Liquid Applied in the Field
- **Latex** (water-based, including EVA, acrylic)
 - Used mainly in residential and light commercial construction applications
 - Interior and/or exterior uses
 - Premium products meet ± 25% movement (ASTM C 920, class A)
 - Excellent paintability (with latex paints)
 - Very good exterior durability
 - Exhibit some shrinkage after cure
 - Sometimes referred to as caulk
 - Not used for exterior applications on high rise construction or for applications undergoing significant cyclic movement

- **Acrylic** (solvent-based)
 - Used in residential and light commercial construction, mainly for exterior applications
 - Generally meet ± 12.5% movement (ASTM C 920, class B)
 - May need special handling for flammability and regulatory compliance
 - Can be painted
 - Short open time; difficult to tool
 - Exhibit some shrinkage upon cure
 - Often used for perimeter sealing; low movement joints

- **Butyls** (solvent-based)
 - Excellent adhesion to most substrates
 - Limited movement capabilities, generally up to ± 10%
 - Excellent weathering
 - Good use as adhesives in industrial and packaging applications
 - Sometimes used in curtain wall applications where adhesion to rubber compounds is needed
 - Most are stringy and difficult to apply neatly
 - May show some shrinkage after cure; may harden and crack over time on exposed surfaces

- **Polysulfides**
 - First "high performance" sealant chemistry; mainly used in industrial applications
 - Poor recovery limits their use in joints with high cyclic movements
 - Can be formulated for excellent chemical resistance (especially for aviation fuel)
 - Good performance in submerged applications
• Require primer on almost all substrates

Silicones
- Structural bonding and stop-less glazing of glass to frames
- Very good joint movement capabilities; can exceed ± 50% ([ASTM C 920](#), class A)
- Excellent UV and heat stability
- Good adhesion to many substrates especially glass; often a primer is recommended on many substrates, particularly porous substrates
- Not paintable
- Used in protective glazing systems and to insulate glass to improve thermal performance (reduce heat loss). Also designed for missile impact and bomb blast situations)
- Acetoxy chemistry based sealants have strong odor, but newer chemistries have very low odor
- Adhesion is adversely affected by less than perfect application conditions
- High, medium and low modulus materials available
- May stain some types of natural stone without primers

Polyurethanes
- Used in industrial and commercial applications
- Excellent movement capabilities, up to ± 50% ([ASTM C 920](#), class A)
- Not used in structural glazing applications (avoid direct contact to glass)
- Excellent bonding, generally without a primer for many surfaces
- Can be formulated for good UV resistance
- Paintable
- Some formulations may contain low levels of solvent
Factory Molded

- Gaskets and seals
- Strip-seals
- Compression systems

The following table shows different sealant formulations, rated for selected applications: (1=no rating, 2=poor, 3=good, 4=excellent)

<table>
<thead>
<tr>
<th>Use</th>
<th>Latex</th>
<th>Acrylic</th>
<th>Butyl</th>
<th>Polysulfide</th>
<th>Silicone</th>
<th>PU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submerged</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Interior</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Exterior</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Structural Glazing</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Window Perimeter</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Expansion Joints</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Traffic Joints</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Wide Joints</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Paintable</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Chem. Resistant</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>EIFS</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Tilt-up</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Pre-Cast</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Cast-In-Place</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Brickwork</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Curtain Wall</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>UV Resistance</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>